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Introduction:  
 
Prostatic adenocarcinoma (PC) is the most common form of non-cutaneous cancer and second most lethal 
cancer in American men but demonstrates tremendous disparity in both incidence and severity between African 
American men (AAM) and Caucasian men (CM). AAM have an incidence rate of 231.9 PCs/100,000 men 
whereas CM have an incidence rate of 146.3 PCs/100,000 men, a ratio of 1.58 AAM/CM, while the mortality 
rate for AAM is 56.3/100,000 and for CM is 23.6/100,000 men, a ratio of 2.39 AAM/CM(1). These data show 
that AAM not only have a disproportionate incidence rate, but their mortality rate is almost 2.5X higher, 
suggesting that AAM are more likely than CM to have their cancer progress to advanced, fatal disease. The 
reasons for the high degree of disease burden in AAM are unknown, but may stem from biological, economic, 
psychological and sociological origins. Low socioeconomic status, absence of health insurance, poor access to 
health care, and lack of a regular primary care physician are substantial barriers to PC screening and early 
diagnosis(2).  These factors are likely responsible for some of the unequal disease burden between AAM vs. CM, 
but it is also apparent that there is a biological basis for the PC risk discrepancy. We have identified prostatic 
intratumoral steroidogenesis as a biological factor that explains some or much of the disparity in lethal PC rates 
between AAM and CM.  In addition, circulating cholesterol has been identified in pre-clinical and 
epidemiological studies as a likely promoting factor in PC progression(3-17). We hypothesize that serum 
cholesterol level affects tumor steroidogenesis by both serving as a rate-limiting metabolite precursor of 
intratumoral androgen synthesis, as well as a steroidogenic pathway agonist. We predict that we will find higher 
androgen levels in the tumors of men with higher levels of cholesterol. We further hypothesize that for any 
given serum cholesterol level, AAM will have higher tumor steroidogenesis. Using in vivo model systems we 
are testing whether therapeutically targeting cholesterol will reduce intratumoral steroidogenesis. This project 
specifically focuses on the effectiveness of cholesterol targeting as a means of delaying disease progression in 
the context of castration resistant prostate cancer, which is uniformly fatal. 
 
 
Body: 
 
Task 1. Determine whether there is a disparity in level of steroidogenic enzymes and androgens between the 
prostatic tumors of African American and Caucasian men (1-24 months).  This task requires recruitment of 
patients, collecting patient serum, serology including cholesterol measures, radical prostatectomies or excision 
of metastatic lesions (Duke site), shipment of frozen tissue to the Solomon lab (Children’s Hospital Boston, 
CHB, site), for analysis of androgens and steroidogenic enzymes. 
 
To accomplish task 1 a new human subjects protocol (key parts are excerpted below) at Duke University 
Medical Center required institutional approval.  A full copy of the current draft protocol is amended to this 
progress report.   
 
1.0 STUDY DESIGN 
 
This is a prospective study with no clinical intervention. Eligible patients will include those undergoing a 
radical prostatectomy regardless of disease risk or men undergoing excision of tissue for CRPC progression. 
Accrual will occur at both Duke University and the Durham VA. We anticipate enrolling 120 men undergoing a 
radical prostatectomy and 20 men undergoing excisional biopsy for CRPC progression over 2 years. Of the 120 
men undergoing a radical prostatectomy, we anticipate only 30 will come from the Durham VA and of the 20 
men undergoing excisional biopsy, we anticipate 5 coming from the Durham VA. After providing written 
consent, a blood sample, anthropomorphic measures, and basic medical history will be obtained prior to 
surgery. At the time of surgery, a sample of the excised tissue (either radical prostatectomy or excisional biopsy 
tissue) will be frozen and sent to Dr. Keith Solomon at Boston Children’s Hospital for analyses to measure 
tissue androgen levels and expression of steroidogenic enzymes. All tissue samples will be sent to Dr. Solomon 
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and will be labeled only with unique subject number and date of surgery. Results from the tissue analyses will 
be sent to Duke for statistical analyses under the direction of Dr. Maragatha Kuchibhatla from Duke University. 
 
2.0 ELIGIBILITY CRITERIA 

2.1 Inclusion Criteria 

1. Pathologically confirmed adenocarcinoma of the prostate 

2. Elected primary  radical prostatectomy or undergoing excision of tissue for CRPC progression 
including TURP 

3. Race is either African-American or Caucasian 

4. Evidence of a personally signed and dated informed consent document indicating that the subject has 
been informed of all pertinent aspects of the study. 

 
2.2 Exclusion Criteria for Men in the Radical Prostatectomy Cohort 

1. History of ever receiving hormone or antiandrogen therapy (e.g. finasteride, dutasteride, Avodart) 

2. Prior prostate radiotherapy (external beam or brachytherapy) or cryotherapy 

 
2.3 Exclusion Criteria for Men Undergoing Excision of Tissue for CRPC Progression 
1. Unable to provide written informed consent 

 
2.4 Withdrawal Criteria 

Subjects who do not undergo radical prostatectomy or excision of tissue for any reason will be deemed 
non-evaluable and no further follow up will be collected. These subjects will be replaced. 

 
3.0 STUDY PROCEDURES 

 5.1 Visit Schedule 
 
Table 1: Evaluation and visit schedule  
 
Examination Screen Study Visit Tissue Collection 
 D-60 to -1 D-60 to -1 Day of Surgery 

(D0) 
Consent X (X)  

Eligibility X (X)  

Medical History and 
Demographics 

 X  

PSA  X  

Anthropometric Measures1  X  

Testosterone   X  

Free Testosterone  X  

Lipid Panel  X  

SHBG  X  
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Prostatectomy or excision of 
CRPC progression2 

  X 

 
1 Height, weight, and waist circumference will be measured and collected 
2 With tissue procurement for molecular assessments 
 

5.2 Screening and Study Visit 
 

For enrollment at Duke University, prior to undergoing any study-specific procedures, patients must read and 
sign the IRB-approved informed consent form.  
 
For enrollment at the VA, a HIPAA waiver will allow the study coordinator to perform the initial screening for 
eligibility among men undergoing a radical prostatectomy or excisional biopsy for CRPC progression. The 
study coordinator will use the computerized medical records system (CPRS) to ensure patients meet the 
inclusion/exclusion criteria stated in the protocol. Upon determining patient eligibility, the study coordinator 
will first speak with the patient at his pre-op appointment and attempt to consent him. If the subject is interested 
in participating, he can either complete the study procedures that day or the study coordinator can schedule a 
screening visit in the near future, as long as it is within the protocol specified window (Table 1). Documentation 
of the consent process and a copy of the signed consent will be maintained in the patient’s medical record. 
 
All study procedures are permitted within the window frame indicated in Table 1. The screening and study visit 
may be combined as the same visit. 
 
The following procedures will be completed for this study: 
 

1) Anthropometric measures: Height, weight, and waist circumference measurements will be completed. 
2) Blood collection: Blood will be drawn and processed at the CLIA-certified Duke clinical laboratories for 

analysis of testosterone, free testosterone, PSA, lipid panel, and SHBG. Blood drawn at the VA will 
be processed at the VA. 

3) Medical history and demographics: Obtain medical history and demographic information from patient 
and via electronic medical records.  

4) Medical record follow-up: Outcome data (such as but not limited to PSA recurrence, time to recurrence, 
additional treatment, metastatic disease, mortality, and cause of death ) will also be collected. This 
involves research staff following patients through electronic medical records or phone follow up 
until death. 

 
5.3 Day of Surgery  

 
The following will be performed on the day of surgery: 

 
1) Either radical prostatectomy or biopsy for excision of tissue for CRPC progression, which the patient is 

scheduled for – this is not research. 
2) Tissue collection at the time of surgery/biopsy for pathologic assessment and research assessment. 

 
Tissue samples will be obtained immediately after removal of the prostate or excisional biopsy (fixation should 
occur within 30 minutes of resection) 
. 
For radical prostatectomy, a minimum of 6 core biopsies will be taken from tumor rich areas of the prostate 
identified from the biopsy pathology report, and from tumor-involved prostate if visible. An additional 2 cores 
of normal tissue will also be taken. The cores will be placed in tubes and snap frozen (no OCT).   
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For excisional biopsies of CRPC lesions, a portion of the tissue will be taken, placed in a tube and snap frozen 
(no OCT). 
 

5.3.1 Tissue Procurement at Duke  
 

Tissue collected from Duke subjects will be collected under the DUHS Biospecimen Repository and Processing 
Core (Pro00035974). Tissue will be processed and stored according to the BRPC protocol until shipped to Dr. 
Solomon. 
 
     5.3.2 Tissue Procurement at Durham VAMC 
 
Tissue collected from Durham VAMC subjects will be done in conjunction with the Pathology Department at 
the Durham VAMC as not to interfere with appropriate pathological interpretation of the specimen for clinical 
purposes. Samples will be stored at Dr. Freedland’s laboratory at Duke in the Medical Sciences Research 
Building until shipped to Dr. Solomon (stored <90 days). Unused samples will be returned to the Durham VA 
and stored either at the VA or at Duke in Dr. Freedland’s laboratory under an off-site tissue bank waiver. 
 
     5.3.3 Shipping  
 
Frozen prostate samples will be sent to Dr. Keith Solomon at Boston Children’s Hospital. The tissue will be 
sent in batches by an overnight carrier to Dr. Keith Solomon at Boston Children’s Hospital for analysis. 
Samples will be labeled with the study subject number and date of surgery. Frozen samples will be batch 
shipped (Monday and Tuesday shipment only) by overnight express for next day delivery on dry ice.  
 

Frozen specimens will be shipped on dry ice to the following address:  
 

Dr. Keith Solomon c/o Kristine Pelton  
Boston Children's Hospital  
Department of Urology 
Enders 10 
61 Binney st 
Boston, MA 02115 
Phone: 617-919-2937 
Email: Kristine.pelton@childrens.harvard.edu 

 
     5.3.4 Tissue Analysis 
 
Dr. Solomon will measure the level of steroidogenic/cholesterol sensitive enzymes using qPCR and western 
blotting: PSA, CYP17A1, CYP11A1, STaR, HSD3B1/2, HSD17B3, AKR1C1/2/3, 5RD5A1/2, HSD17B10, 
CYP19A1, ABCA1, ABCG1, ABCA7, CYP27A1 CYP7B1, LDLR & SR-B1, acyl-CoA cholesterol acyl 
transferase (ACAT), and HMG-CoA reductase. From the same tissue samples, Dr. Solomon will use mass 
spectrometry (MS) to measure tumor tissue levels of androstenedione, T, DHT, DHEA, and androstenediol. 
Finally, he will use immunoflouresence to analyze tumors for nuclear localization of the androgen receptor 
(AR). 
 
Task 2. Using in vivo model systems we will determine if therapeutically targeting cholesterol alters 
intratumoral steroidogenesis. This task requires placing SCID mice on specialized diets that raise or reduce 
circulating cholesterol levels, implanting xenograft tumors, measuring tumor growth, and determining the effect 
of cholesterol raising and reducing on tumor growth and intratumoral steroidogenesis (CHB site) (months 1-36). 
 
6 w old castrated and intact male SCID mice had their baseline cholesterol levels normalized by feeding them a 
low fat, no cholesterol (LFNC) diet for 2 w. The animals were then randomized into our unique diet scheme. 



 

7 
 

The basic design of our diet approach uses a defined low fat/no cholesterol [LFNC—equivalent of a normal 
chow diet which typically contains nominal (2 parts/million) cholesterol] and a high fat/high cholesterol diet 
(HFHC, w/o sodium cholate). The diets are balanced in micronutrients on a per-calorie basis (see Table 2), 
permitting us to use the diets isocalorically. Different gram amounts of each diet are fed to the mice, fixing the 
amount of calories/mouse.  Our HFHC diet does not make mice obese, in fact they weigh the same as the mice 

  
 
 
 
 

 
fed the LFNC diet, does not raise triglyceride (TG) levels in mice (not shown), but does raise cholesterol levels 
significantly(18-22) (Fig 1).  The mice were then continued on their respective diets for 2 w, tested for cholesterol 
levels, and human PC cells were implanted subcutaneously as described(14,22). Mice were bled (tail vein) every 3 
d to monitor PSA, T (ELISA) and cholesterol levels (Infinity assay). 24 d after implantation most of tumors 

were palpable, with diet producing the expected effect on tumor growth 
(Fig 2). At that point, 2/3 of the mice were castrated (Fig 3). All mice were 
continued on their diet regimen. Castration caused tumor growth to 
attenuate, and within 2 d post castration further tumor growth could not be 
measured (not shown). 4 animals from each group were sacrificed on post-
castration day 7, the remaining castrates were harvested 6 w post 
castration. This was an earlier than anticipated (see Fig 4) as attrition of 
the SCID mice due to lymphoma was higher than expected or ever noted 
by us in several our prior studies, some lasting several months(14,21-24).  
Since our vendor has no explanation for this high non-protocol related 
death rate, we are switching our model to the Nude mouse (Foxn1−/−) 
/xenograft model for future experiments.  Nude mice, which are only 
athymic and lack, for the most part, the T cell arm of the immune system, 

as opposed to SCID mice that lack both B and T cells, do not experience 
high rates of spontaneous lymphoma, permitting us to complete the 
experiment as envisioned. At sacrifice the animals were be bled for 
cholesterol and other serological markers and tumors removed and used 
for endpoint testing. Tumors from this initial experiment are being 
analyzed blinded and we will not unblind the data until all endpoints have 
been measured. Our primary experimental endpoints are: (1) 
Steroidogenic/ cholesterol sensitive enzymes. We are using qPCR and 
western blotting to measure the level of steroidogenic proteins/enzymes: 
CYP17A1, CYP11A1, STaR, HSD3B1/2, HSD17B3, AKR1C1/2/3, 
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Figure 1.  Cholesterol level in SCID 
mice.  Mice were fed defined LFNC and 
HFHC diets (see Table 2) for 2 w and their 
cholesterol levels were measured.  Data 
are presented as cholesterol level (mg/dL) 
± SD vs. diet group. N=34-39 P=1.1325E-
13 (Student’s t-test). 

Figure 2.  Tumor growth.  SCID mice fed defined LFNC and 
HFHC diets were implanted with LNCaP tumors and tumor 
volume on the day of castration (24 d post implant) was 
measured.  Data are presented as tumor volume (mm3) ± SEM vs. 
diet group. N=25-28. P=0.045 (Student’s t-test)  

Figure 3.  Testosterone level in 
castrated and intact mice. Mice fed 
defined diets and implanted with 
LNCaP tumors were either subjected to 
surgical castration or remained intact.  
At sacrifice terminal bleeds were 
performed and testosterone levels were 
measured by Elisa.  Data are presented 
as testosterone (ng/ml) ± SD vs. group. 
N=8-13. P=5.13E-05 (Student’s t-test). 
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5RD5A1/2, HSD17B10, and CYP19A1, similar to our published work(19). We anticipate that elevated 
cholesterol level and castration will lead to an increase in the enzymes responsible for the synthesis of T and 
DHT in the tumor. This is a critical test of our hypothesis. We are also determining whether other proteins that 
are sensitive to changing cholesterol levels are regulated in this model: 1) cholesterol efflux transporters, 
ABCA1, ABCG1, and ABCA7; 2) Enzymes catalyzing the non-hepatic ‘acid’ pathway of bile acid synthesis 
CYP27A1 and CYP7B1(25); 3) cholesterol receptors LDLR & SR-B1; 4) acyl-CoA cholesterol acyl transferase 
(ACAT) (cholesterol esterification); and 5) HMG-CoA reductase (2) Androgen analysis. We are also using 
mass spectrometry (MS) to determine whether castration and/or hyper- and hypocholesterolemia affect the 
tumor tissue levels of androstenedione, T, DHT, 
DHEA, and androstenediol using tumors 
generated in castrated and intact mice. (3) AR 
analysis and activity level. We are determining 
whether castration and/or hyper- and 
hypocholesterolemia affects the expression, and 
nuclear localization of the AR. Using IF we are 
analyzing tumors for nuclear localization of the 
AR and are determining by IF and Western the 
relative level of the AR in tumor xenografts. We 
anticipate that if the levels of androgens are 
increased by diet and/or castration, this will result 
in an increase in AR localization in nuclei. In 
contrast, hypocholesterolemia may decrease 
androgen synthesis and result in less nuclear AR. 
We are also interrogating the AR activity of the 
tumors by examining mRNA levels of PSA, a 
canonical AR-target gene.   
 

 
 
 
 

Figure 4.   Flow chart of xenograft/castration experiments. 
 

Table 2. Defined LFNC and HFHC diets.

D iet  
Product # 

Low- fa t, no-chol  (LFN C)  
(D12102C) 

High-fa t, wi th-chol (H FHC) 
(D12109C) 

% gm kcal gm kcal
Protein 19.2 20.0 22. 5 20.0
Car bohydra te 67.3 70.0 45. 0 40.0
Fat 4.3 10.0 20. 0 39.9

T otal 100.0  100.0

K cal/gm 3.85  4.50  
 

Ingred ient gm kcal gm kcal

Ca sein or Soy 200 800 200 800

L -cyst ine 3 12 3 12
 

Corn star ch 375 1500 212 848

M altodextrin 10 125 500 71 284
Sucrose 200 800 113 452

 
Cellulose, BW200 50 0 50 0

 
Soybean Oil 25 225 25 225 
Coconut  Oi l, 101 0 0 0 0 
Cocoa  Butter 20 180 155 1395
     
M inera l M ix 
S10021 

10 0 10 0 

D ica lcium 
Phospha te 

13 0 13 0

Ca lcium  
Car bona te 

5.5 0 5.5 0

Potassium Citrate 16.5 0 16. 5 0
     
V itamin Mix 
V 10001 

10 40 10 40 

Ch oline Bitartrate 2 0 2 0

 
Ch olesterol 0 0 11. 25 0

     
Red D ye, FD&C 
#40 

0 0 0.05 0

Blue  D ye,  FD &C 
#1 

0 0 0.05 0

Y ellow D ye, 
FD& C #5 

0.1 0 0 0

 
T otal 1055.1 4057 901.85 4056
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Key Research Accomplishments: 
 

 Demonstrated reproducibility concerning the effect of isocaloric low fat, no cholesterol and high fat, 
high cholesterol diets on circulating cholesterol levels in mice.   

 Demonstrated reproducibility concerning the effect of isocaloric low fat, no cholesterol and high fat, 
high cholesterol diets on prostatic tumor growth, with high fat, high cholesterol diets causing accelerated 
tumor growth. 

 Demonstrated the effect of isocaloric low fat, no cholesterol and high fat, high cholesterol diets on tumor 
growth in castrated mice. 

 In the process of measuring the effect of diet on androgen level and AR activity in tumor grown in 
castrated mice fed isocaloric low fat, no cholesterol and high fat, high cholesterol diets. 

 Produced an approvable IRB protocol to allow the collection of prostates from African American and 
Caucasian men requiring radical prostatectomies for prostate cancer.    

 

Reportable Outcomes: 

1) Created protocol to establish a prostate cancer tissue collection indexed with serum cholesterol values. 
2) Generated a collection of human tumor xenografts from castrated and intact hosts to determine the effect 

of hyper and hypocholesterolemia on intratumoral steroidogenesis. 
3) Gave a seminar at Hampton University, a historically black college, on cholesterol and prostate cancer 

risk in part due to research support by this award. 
4) Dr. Solomon received an offer of employment from Hampton University, in part due to the research 

support by this award. 
5) Kristine Pelton (Solomon Lab Manager) was given a promotion based in part on her efforts supported by 

this award. 
 

 

Conclusion: 

We have begun the analysis of tumor xenografts from castrated mice fed defined diets and anticipate that, as 
hypothesized, a high fat, high cholesterol ‘Western diet’ will contribute to intratumoral androgen synthesis.  
Preliminary findings suggest that we will have a decisive and reportable outcome to these initial experiments as 
all measured perameters thus far suggest a successful experiment: 1) Our low fat, no cholesterol (LFNC) vs. 
high fat, high cholesterol (HFHC) diets produced the expected effects on serum cholesterol (Fig 1); 2) the 
LFNC vs. HFHC diet produced the expected effects on tumor growth prior to castration (Fig 2); and 3) 
castration caused circulating testosterone levels to be undetectable (Fig 3) and tumor growth to cease.  We have 
also created a human subjects protocol that is being approved at Duke University Medical Center and we should 
begin to collect human prostates for analysis in the next few weeks and begin to generate the data required to 
address the question of whether there are differences between Caucasan and African-American men in their 
levels of intratumoral androgen and whether high levels of serum cholesterol influence these levels. 
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1.0 BACKGROUND AND RATIONALE 
 

1.1 Background 

Prostatic adenocarcinoma (PCa) is the most common form of non-cutaneous cancer and second 
most lethal cancer in American men, with an incidence of 217,730 new cases, and more than 
32,050 deaths in 2010 alone1. PCa is also a cancer which demonstrates tremendous disparity in 
both incidence and severity between African American men (AAM) and Caucasian men (CM). 
AAM have an incidence rate of 231.9 PCas/100,000 men whereas CM have an incidence rate of 
146.3 PCas/100,000 men, a ratio of 1.58 AAM/CM, while the mortality rate for AAM is 
56.3/100,000 and for CM is 23.6/100,000 men, a ratio of 2.39 AAM/CM1. These data show that 
AAM not only have a disproportionate incidence rate, but their mortality rate is almost 2.5X 
higher, suggesting that AAM are more likely than CM to have their cancer progress to advanced, 
fatal disease. The reasons for the high degree of disease burden in AAM are unknown, but may 
stem from biological, economic, psychological and sociological origins. Low socioeconomic 
status, absence of health insurance, poor access to health care, and lack of a regular primary care 
physician are substantial barriers to PCa screening and early diagnosis21.  These factors are likely 
responsible for some of the unequal disease burden between AAM vs. CM, but it is also apparent 
that there is a biological basis for the PCa risk discrepancy. For example, we have shown in even 
in an equal-access medical center and when treated equally, AAM are more likely to have their 
cancers progress after adjusting for disease characteristics22. Moreover, multiple studies 
determined allelic variants in chromosomal regions, especially 3 separate regions (risk-regions) 
of chromosome 8q24 spanning ≈600kb are associated with a higher risk of PCa or of metastatic 
prostate disease in both CM and AAM23-28.  Of particular interest is risk-region 2 in which the 
risk alleles are carried at a much higher frequency in AAM than in CM.  None of the risk-regions 
are gene encoding and none reside within or near genes, suggesting that these genetic elements 
might modify PCa risk by altering vital pathways.  Interestingly, 3 adjacent SNPs centromeric to 
risk-region 2 have been shown to be associated with circulating testosterone (T) levels29, 
suggesting that this region may regulate steroidogenesis. Given our data and those of others that 
implicate intratumoral steroidogenesis as a critical aspect of PCa progression, the genetic linkage 
data suggesting that regulation of testosterone level as a potential point of elevated risk in AAM, 
and the higher androgen receptor (AR) expression levels in AAM30, Dr. Solomon has identified 
prostatic intratumoral steroidogenesis as a biological factor that may explain some or much of 
the disparity in lethal PCa rates between AAM and CM. These observations stem directly from 
our work and that of others that suggests that prostate tumor cells in human patients synthesize 
androgens de novo directly from cholesterol2-19. A prior study of intratumoral androgen levels 
demonstrated no difference between AAM and CM31.  This prior study used insensitive ELISA 
assays, and biased the results toward the null by assigning the assay’s lower limit of detection to 
any sample that returned a ‘zero’ reading, a technique that makes this prior analysis inconclusive. 
Given the importance of the question, a fresh look at potential racial disparity in intratumoral 
steroidogenesis using modern sensitive techniques is needed.  In the current study we will use 
tandem mass spectrometry that is sensitive in the 100 femtomol/gm tissue range.   
 
Intratumoral Androgen Synthesis: Prostatic tumors respond to circulating androgens through 
the action of the AR, which drives the proliferation of PCa cells, even under conditions of 
hormone suppression during late-stage disease13,18,32. Androgen Deprivation Therapy (ADT) is 
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the primary treatment strategy for advanced metastatic PCa13,33. Despite widespread early 
responses, PCa almost invariably becomes "castration resistant" (castration resistant prostate 
cancer; CRPC) and the tumor cells continue to grow despite systemic castrate levels of 
androgens13,18. In this phase of disease, tumors become more aggressive. There are several 
theories about how this castration-resistant phenotype comes about: 1) gene amplification and/or 
mutation of the AR, allowing the receptor to be sensitive to low levels of androgen34-40; 2) 
residual androgen production from the adrenals14; and 3) promiscuous receptor-ligand 
interactions36,41. Although it was 30 years ago that it was first reported42 that sufficient androgen 
to drive the AR remained in the prostate after ADT42,43, the significance of this observation was 
partially obscured, as other work appeared to demonstrate an absence of functional androgen in 
men with CRPC44. The combination of castration with an anti-androgen is currently commonly 
used to treat advanced PCa. Further evidence that CRPC is still driven, at least in part, by 
androgen is provided by results of a phase III trial using the CYP17 inhibitor, abiraterone, in men 
with CRPC showing a significant overall survival benefit45. Several groups have presented data 
which suggest that PCa cells in men receiving ADT have androgen levels high enough to 
activate the AR3-5,7,9,11,12,16,17,19,42,44,46-50. The mechanism responsible for maintenance of 
functional tissue levels of T and DHT in CRPC is unknown.  
 
Recently, several lines of evidence are converging on the hypothesis that PCa cells synthesize 
their own androgens, including in the castrate environment2,15,50. Our data (Figs 1&2, see below) 
are consistent with this idea. Locke et al.15 demonstrated that all of the enzymes necessary for de 
novo androgen synthesis are expressed in LNCaP tumor xenografts, and that androgen-starved 
PCa cells are capable of synthesizing DHT from acetic acid, suggesting that the entire pathway 
from acetatecholesterolDHT is intact in this model system15. Montgomery et al.50 
demonstrated that the full complement of enzymes comprising the steroidogenic pathways are 
present in the majority of human primary and metastatic PCas examined50, implying that de novo 
androgen synthesis is not merely an experimental phenomenon, but rather a potential underlying 
cause of disease progression in the hormone-repressed state. In addition, a very recent report 
demonstrates that PCa bone metastases have higher concentrations of cholesterol over the levels 
found in normal bone and in bone metastases from other malignancies51. Increased cholesterol 
along with the ability to synthesize androgen fundamentally support our hypothesis that de novo 
steroidogenesis occurs in CRPC.  
 
The ability of PCa cells to synthesize androgen from cholesterol may actually increase following 
hormone suppression because castration increases serum cholesterol levels49,52-54, as well as 
cholesterol synthesis in experimental prostatic tumors8. Dr. Solomon has noted this increase in 
serum cholesterol in castrated mice (not shown). Our studies of castrated mice show that 
hypercholesterolemia accelerates the growth of PCa xenografts in the hormone-suppressed 
condition (Fig 3), and suggests that hypercholesterolemia contributes to androgen synthesis in 
prostate tumors. Interestingly, in contrast to tumors grown in hormonally intact mice (Figs 1&2), 
which have T >DHT, tumors grown in castrates have DHT >T.  
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Fig 2. Tumor DHT levels are increased in the tumors of 
hypercholesterolemic mice. Mice were fed either a HFHC or LFNC diet 
±ezetimibe and implanted with tumors which were harvested 14d after 
first appearance. Tumors were removed and analyzed for DHT levels by 
MS.  Data are plotted in A as DHT (pg/mg) level vs. quartile of 
cholesterol. In B, data are plotted as DHT vs. diet group ±SD.  Data were 
analyzed by ANOVA, which indicated that in A the data had not yet 
reached, but was nearing significance (p=0.10, p for trend 0.11). Analysis 
of diet/DHT data indicated that the levels in tumors from 
hypercholesterolemic diets trended higher (p=0.054). N=11‐13.  

Fig. 1.  The relationship between circulating cholesterol level, tumor 
growth and tumor testosterone (T).  Tumors grown in mice that were 
either hypo-, normo-, or hypercholesterolemic were weighed and 
portions were analyzed by MS for the presence of T.  Circulating 
cholesterol in the mice was determined by Infinity assay.  In row A the 
cohort is divided by quartile of circulating cholesterol level (2 left most 
panels) and by quartile of tumor weight (right most panel).  In row B the 
cohort is divided into < or > median value (in the left most 2 panels it is 
circulating cholesterol, in the right most panel it is tumor weight).  Data 
are graphed as dot plots (each dot representing a different mouse or 
tumor). ANOVA indicated significant effects of serum cholesterol on 
tumor weight, and on T levels. ANOVA also indicated a significant 
effect of T on tumor growth when analyzed by < > median.  N=11-13 
for each quartile in row A and N=24-26 < > median in row B. 
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Identifying Cholesterol as a Modifiable Risk Factor in Intratumoral Steroidogenesis: My 
laboratory has been investigating the causal connection between altered cholesterol homeostasis 
and PCa. Cholesterol accumulates in normal aging prostate tissue and in PCa55-58. Importantly, 
epidemiologic and pre-clinical studies have found a correlation between serum cholesterol 
level and PCa incidence and/or progression55,58-71. ‘Western’ diets, which are high in fat and 
cholesterol, have been linked to PCa, although the specific dietary components responsible for 
this association are incompletely understood72-79. Furthermore, several studies of cholesterol-
lowering drugs (primarily HMG-CoA reductase inhibitors, a.k.a. statins) have found an inverse 
association between statin use and PCa incidence and/or progression, including a 
significant reduction in advanced disease risk in men who have taken statins for ≥5 
years59,61,63-66,68,80-89.  
 
Dr. Solomon has shown hypercholesterolemia stimulates growth of LNCaP human PCa 
xenografts69,90. Tumors in the hypercholesterolemic environment accumulated more cholesterol 
in their membranes, exhibited less apoptosis, had enhanced Akt activation (a kinase linked to 
aggressive PCa)91, and had more angiogenesis69,90. Dr. Solomon also showed 
hypocholesterolemia has the opposite effect, inhibiting prostatic tumor growth. In explaining 
these results, Dr. Solomon hypothesized that cholesterol might directly contribute to tumor 
growth by altering signal transduction pathways55,69,70. How can cholesterol affect tumor growth 

A

B

A

B

Fig 3.  Tumor growth in castrated mice.  Castrated mice were fed normo- (LFNC)
or hypercholesterolemic diets (LFHC) for 80d, LNCaP cells were implanted and the
mice continued on the diets for 22d. (A) Tumor take. The # of tumors in each diet
group were counted & data plotted as tumor take (% of implantation sites) vs. Time
(d). Significance was determined by logistic regression analysis. At all points where
tumors were present, the 2 cohorts differed significantly. P<0.05;n=40/group. (B)
Longitudinal volume measurements. Tumors were measured at various times
starting at 1st appearance (d 1) & continued for 22d. Data are plotted as tumor
volume (mm3)/site vs. Time (days)±SE;n=40/group. (C) Androgens in tumors.
Tumors from mice fed a LFNC or a LFHC diet were removed and portions of the
tumor analyzed by MS.  Data are presented as mean DHEA, DHT, or T levels
(pg/mg tissue)±SE. n=6/group. These data are not significant.  
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so profoundly? Cholesterol makes up almost 1/3 of plasma membrane lipids. The effect of 
cholesterol on membrane organization is a feature of its unique chemistry, where the 
combination of the stiff, fused ring system and small head group affects cholesterol packing with 
other lipids and proteins. In mammalian cells, cholesterol content is a key determinant of 
membrane property and its concentration in cell membranes is tightly regulated, even as the 
external availability of cholesterol varies widely. While many studies  including our own have 
demonstrated that the ability of cholesterol to organize membrane structure into liquid ordered 
domains affects signal transduction, including signaling by the epidermal growth factor receptor 
(EGFR) and Akt170,92, other explanations for the effect of hypercholesterolemia on PCa risk 
warrant careful consideration. In particular, one important new hypothesis is that cholesterol 
affects PCa growth by serving as a precursor for intratumoral androgen synthesis. 

 
Cholesterol, Tumor Growth & Androgen Synthesis in the Mouse: Studying the specific role of 
cholesterol in murine models has been difficult to accomplish; serum cholesterol levels in normal 
mice cannot be reduced by statin drugs58,93,94 and, as Dr. Solomon has written about extensively, 
studies using statins cannot be interpreted as showing a cholesterol effect because statins do not 
target cholesterol specifically58,90. Also, standard diets used for inducing hypercholesterolemia in 
mice contains sodium cholate, which is both hepatotoxic and unnecessary for raising cholesterol 
levels90,95,96. Studies of dietary fat and cholesterol often control for caloric effects of by 
balancing the control diets with added carbohydrates95, making the mice hyperglycemic and 
raising insulin levels, or in other cases don’t control for energy at all97. Given that carbohydrate 
restriction and the resultant lower serum insulin levels can also slow tumor growth98,99, most diet 
studies are difficult to interpret. 
 
Using novel diets and feeding strategies, Dr. Solomon created an innovative isocaloric diet 
approach in which Dr. Solomon determined the specific effects of cholesterol in mice by 
following 4 murine cohorts each with a different serum cholesterol level (≈140, 160, 180 & 200 
mg/dL). As Dr. Solomon has shown90, this approach permits us to study hyper and 
hypocholesterolemia simultaneously without affecting liver function, insulin levels, animal 
weight, or circulating steroid hormone levels. The basic design of our cholesterol-targeted 
approach combines a diet regimen with a pharmaceutical agent, ezetimibe (Zetia) that 
specifically targets cholesterol. In this scheme Dr. Solomon used a low fat/no cholesterol diet 
(LFNC) and a high fat/high cholesterol diet (HFHC) (w/o sodium cholate) ± ezetimibe 
(30mg/kg/d). Ezetimibe is an FDA approved drug that blocks cholesterol uptake in the gut, 
thereby lowering serum cholesterol levels. Ezetimibe is a specific antagonist of NPC1L1, the 
bona fide gut cholesterol transporter100-103. Ezetimibe has no known target other than NPC1L1, 
and NPC1L1 is expressed only in the gut, and in hepatocytes (in humans), but not by tumor cells. 
Treating PCa cells in vitro with ezetimibe has no affect on cell growth or survival (data not 
shown).  
 
Having achieved the ability to specifically alter cholesterol levels isocalorically, Dr. Solomon 
created hypo, normo, and hypercholesterolemic groups and implanted mice with LNCaP cells90. 
As Dr. Solomon previously reported90 mice fed the HFHC diet developed larger tumors, whereas 
mice fed the LFNC diet had smaller tumors. The addition of ezetimibe to either diet reduced 
tumor size. The combination of the LFNC diet + ezetimibe had the most significant effect on 
tumor growth (vs. the HFHC diet w/o ezetimibe). Statistical evaluation demonstrated that both 
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the diet (p=0.048) and ezetimibe (p=0.035) produced significant independent, additive, but not 
synergistic, effects on tumor growth (both volume & weight). Serology showed no liver 
dysfunction, no statistical differences in triglyceride (TG) levels (trending higher in the HFHC 
cohort), no detectable effect on serum T & no statistical differences in insulin or IGF-1 levels 
(not shown). Conclusion- circulating cholesterol directly contributes toward PCa growth 
independent of serum T.  

 
Dr. Solomon quantified the level of T (Fig 1) and DHT (Fig 2) in the tumors. To understand the 
complex relationship between cholesterol, tumor growth and T, Dr. Solomon analyzed the tumor 
data in aggregate, divided the samples in half or into quartiles of serum cholesterol or tumor 
weight and determined whether there were significant differences in the T levels between the 
groups. As demonstrated in Fig 1 these data suggest higher serum cholesterol level 
lead to higher intratumoral T and this may, in part, explain the relationship between higher 
cholesterol and tumor growth. As demonstrated in Fig 2, the difference in DHT levels trended 
higher in the highest cholesterol quartile, neared significance between HFHC and LFNC groups, 
and trended toward higher levels in the HFHC cohort. DHEA level trended similarly to T and 
androstenedione levels were not significantly different (not shown). Conclusion—Cholesterol 
may directly contribute to intratumoral androgen synthesis.  
 

1.2 Rationale 
 

Prostatic adenocarcinoma (PCa) is the most common form of non-cutaneous cancer and second 
most lethal cancer in American men, with an incidence of 217,730 new cases, and more than 
32,050 deaths in 2010 alone1.  PCa is also a cancer which demonstrates tremendous disparity in 
both incidence and severity between Caucasian and African American men.  African Americans 
have an incidence rate of 231.9 PCas/100,000 men whereas, Caucasians have an incidence rate 
of 146.3 PCas/100,000 men, a ratio of 1.58 AA/C, while the mortality rate for African 
Americans it’s 56.3/100,000 and Caucasians is 23.6/100,000 men, a ratio of 2.39 AA/C.  These 
data suggest that African American not only have a disproportionate incidence rate, but their 
mortality rate is almost 2.5 times higher, suggesting that African Americans are more likely than 
Caucasians to have their cancer progress to advanced, fatal disease.  The reasons for the high 
degree of disease burden in African Americans is unknown, but may stem from biological, 
economic, psychological and sociological origins. Dr. Solomon has identified prostatic 
intratumoral steroidogenesis as a critical biological factor that may explain some or much of the 
disparity in lethal PCa rates between African American and Caucasian men.  These observations 
stem directly from our own work and that of others that suggests that prostate tumor cells in 
human patients synthesize androgens de novo directly from cholesterol2-19.   
 
Based upon these findings, we hypothesize that dietary and circulating cholesterol contribute 
disproportionately to intratumoral androgen synthesis and to the development of castration-
resistant PCa (CRPC) in African American men.  We aim to test this in a prospective 
observational study by collecting serum blood measured for cholesterol and other factors and 
correlate this with tumor expression of steriodogenic enzymes and tumor androgen levels. 
 
2.0 OBJECTIVES 

2.1 Primary Objective 



Disparities in Intratumoral Steroidogenesis  Duke University Medical Center 
 

Page 9 of 22 
 

Determine whether there is a correlation between serum cholesterol and levels of 
tumor androgens and steroidogenic enzymes and whether these correlations differ in 
African American men. 
 

2.2 Secondary Objective 
Determine whether there is a correlation between total testosterone, free testosterone, 
or sex hormone binding globulin (SHBG) and levels of tumor androgens and 
steroidogenic enzymes and whether these correlations differ in African American 
men. 
 

3.0 STUDY DESIGN 
 
This is a prospective study with no clinical intervention. Eligible patients will include those 
undergoing a radical prostatectomy regardless of disease risk or men undergoing excision of 
tissue for CRPC progression. Accrual will occur at both Duke University and the Durham VA. 
We anticipate enrolling 120 men undergoing a radical prostatectomy and 20 men undergoing 
excisional biopsy for CRPC progression over 2 years. Of the 120 men undergoing a radical 
prostatectomy, we anticipate only 30 will come from the Durham VA and of the 20 men 
undergoing excisional biopsy, we anticipate 5 coming from the Durham VA. After providing 
written consent, a blood sample, anthropomorphic measures, and basic medical history will be 
obtained prior to surgery. At the time of surgery, a sample of the excised tissue (either radical 
prostatectomy or excisional biopsy tissue) will be frozen and sent to Dr. Keith Solomon at 
Boston Children’s Hospital for analyses to measure tissue androgen levels and expression of 
steroidogenic enzymes. All tissue samples will be sent to Dr. Solomon and will be labeled only 
with unique subject number and date of surgery. Results from the tissue analyses will be sent to 
Duke for statistical analyses under the direction of Dr. Maragatha Kuchibhatla from Duke 
University. 
 
4.0 ELIGIBILITY CRITERIA 

4.1 Inclusion Criteria 

1. Pathologically confirmed adenocarcinoma of the prostate 

2. Elected primary  radical prostatectomy or undergoing excision of tissue for CRPC 
progression including TURP 

3. Race is either African-American or Caucasian 

4. Evidence of a personally signed and dated informed consent document indicating that 
the subject has been informed of all pertinent aspects of the study. 

 
4.2 Exclusion Criteria for Men in the Radical Prostatectomy Cohort 

1. History of ever receiving hormone or antiandrogen therapy (e.g. finasteride, 
dutasteride, Avodart) 

2. Prior prostate radiotherapy (external beam or brachytherapy) or cryotherapy 
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4.3 Exclusion Criteria for Men Undergoing Excision of Tissue for CRPC 

Progression 
1. Unable to provide written informed consent 

 
 

4.4 Withdrawal Criteria 

Subjects who do not undergo radical prostatectomy or excision of tissue for any reason 
will be deemed non-evaluable and no further follow up will be collected. These subjects 
will be replaced. 

 
5.0 STUDY PROCEDURES 

 5.1 Visit Schedule 
 
Table 1: Evaluation and visit schedule  
 
Examination Screen Study Visit Tissue Collection 
 D-60 to -1 D-60 to -1 Day of Surgery 

(D0) 
Consent X (X)  

Eligibility X (X)  

Medical History and 
Demographics 

 X  

PSA  X  

Anthropometric Measures1  X  

Testosterone   X  

Free Testosterone  X  

Lipid Panel  X  

SHBG  X  

Prostatectomy or excision of 
CRPC progression2 

  X 

 
1 Height, weight, and waist circumference will be measured and collected 
2 With tissue procurement for molecular assessments 
 

5.2 Screening and Study Visit 

For enrollment at Duke University, prior to undergoing any study-specific procedures, patients 
must read and sign the IRB-approved informed consent form.  
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For enrollment at the VA, a HIPAA waiver will allow the study coordinator to perform the initial 
screening for eligibility among men undergoing a radical prostatectomy or excisional biopsy for 
CRPC progression. The study coordinator will use the computerized medical records system 
(CPRS) to ensure patients meet the inclusion/exclusion criteria stated in the protocol. Upon 
determining patient eligibility, the study coordinator will first speak with the patient at his pre-op 
appointment and attempt to consent him. If the subject is interested in participating, he can either 
complete the study procedures that day or the study coordinator can schedule a screening visit in 
the near future, as long as it is within the protocol specified window (Table 1). Documentation of 
the consent process and a copy of the signed consent will be maintained in the patient’s medical 
record. 
 
All study procedures are permitted within the window frame indicated in Table 1. The screening 
and study visit may be combined as the same visit. 
 
The following procedures will be completed for this study: 
 

1) Anthropometric measures : Height, weight, and waist circumference measurements 
will be completed. 

2) Blood collection: Blood will be drawn and processed at the CLIA-certified Duke 
clinical laboratories for analysis of testosterone, free testosterone, PSA, lipid panel, 
and SHBG. Blood drawn at the VA will be processed at the VA. 

3) Medical history and demographics: Obtain medical history and demographic 
information from patient and via electronic medical records.  

4) Medical record follow-up: Outcome data (such as but not limited to PSA recurrence, 
time to recurrence, additional treatment, metastatic disease, mortality, and cause of 
death ) will also be collected. This involves research staff following patients through 
electronic medical records or phone follow up until death. 

 

5.3 Day of Surgery  
 
The following will be performed on the day of surgery: 

 
1) Either radical prostatectomy or biopsy for excision of tissue for CRPC progression, 

which the patient is scheduled for – this is not research. 
2) Tissue collection at the time of surgery/biopsy for pathologic assessment and research 

assessment. 
 
Tissue samples will be obtained immediately after removal of the prostate or excisional biopsy 
(fixation should occur within 30 minutes of resection) 
. 
For radical prostatectomy, a minimum of 6 core biopsies will be taken from tumor rich areas of 
the prostate identified from the biopsy pathology report, and from tumor-involved prostate if 
visible. An additional 2 cores of normal tissue will also be taken. The cores will be placed in 
tubes and snap frozen (no OCT).   
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For excisional biopsies of CRPC lesions, a portion of the tissue will be taken, placed in a tube 
and snap frozen (no OCT). 
 

5.3.1 Tissue Procurement at Duke  
 

Tissue collected from Duke subjects will be collected under the DUHS Biospecimen Repository 
and Processing Core (Pro00035974). Tissue will be processed and stored according to the BRPC 
protocol until shipped to Dr. Solomon. 
 
     5.3.2 Tissue Procurement at Durham VAMC 
 
Tissue collected from Durham VAMC subjects will be done in conjunction with the Pathology 
Department at the Durham VAMC as not to interfere with appropriate pathological interpretation 
of the specimen for clinical purposes. Samples will be stored at Dr. Freedland’s laboratory at 
Duke in the Medical Sciences Research Building until shipped to Dr. Solomon (stored <90 
days). Unused samples will be returned to the Durham VA and stored either at the VA or at 
Duke in Dr. Freedland’s laboratory under an off-site tissue bank waiver. 
 
     5.3.3 Shipping  
 
Frozen prostate samples will be sent to Dr. Keith Solomon at Boston Children’s Hospital. The 
tissue will be sent in batches by an overnight carrier to Dr. Keith Solomon at Boston Children’s 
Hospital for analysis. Samples will be labeled with the study subject number and date of surgery. 
Frozen samples will be batch shipped (Monday and Tuesday shipment only) by overnight 
express for next day delivery on dry ice.  
 

Frozen specimens will be shipped on dry ice to the following address:  
 

Dr. Keith Solomon c/o Kristine Pelton  
Children's Hospital Boston 
Department of Urology 
Enders 10 
61 Binney st 
Boston, MA 02115 
Phone: 617-919-2937 
Email: Kristine.pelton@childrens.harvard.edu 

 
     5.3.4 Tissue Analysis 
 
Dr. Solomon will measure the level of steroidogenic/cholesterol sensitive enzymes using qPCR 
and western blotting: PSA, CYP17A1, CYP11A1, STaR, HSD3B1/2, HSD17B3, AKR1C1/2/3, 
5RD5A1/2, HSD17B10, CYP19A1, ABCA1, ABCG1, ABCA7, CYP27A1 CYP7B1, LDLR & 
SR-B1, acyl-CoA cholesterol acyl transferase (ACAT), and HMG-CoA reductase. From the 
same tissue samples, Dr. Solomon will use mass spectrometry (MS) to measure tumor tissue 
levels of androstenedione, T, DHT, DHEA, and androstenediol. Finally, he will use 
immunoflouresence to analyze tumors for nuclear localization of the androgen receptor (AR). 
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6.0 STATISTICAL METHODS 

 
Descriptive summary statistics (e.g., mean ±sd, etc.) will be provided for each quantitative 
endpoint related to serum cholesterol and tissue androgen levels as a whole and stratified by race. 
Box-Cox transformations will be used for each endpoint to evaluate whether Gaussian 
assumptions are met. The association between measurements will be evaluated using Pearson’s 
correlation coefficient; the non-parametric Spearman rank correlation will be used when 
normality assumptions are not met. Correlation coefficients will be reported with 95% CIs. 
N=120 paired measurements will provide 93% power to reject an unacceptable correlation of 
r<0.4 when the true correlation is r=0.612, indicating a moderate or stronger level of 
correlation20. Further, regression models will be used in an exploratory manner to characterize 
the relationship among variables including linear & polynomial least-squares models, knotted 
and smooth splines, to evaluate the dynamic range and any threshold values in any non-linear 
associations. Cross-validation and resampling methods will be used to evaluate the relative 
performance of models to avoid over-fitting. To evaluate whether the correlation between 
cholesterol level and intratumoral steroidogenesis is the same for AAM and CM, we will use the 
general linear model to test whether there is a multiplicative interaction setting a two-sided alpha 
= 0.05. Under a Gaussian simulation of the alternative hypothesis that r=0.612 overall, there 
would be 85% power to detect a difference of r = 0.40 in AA and r = 0.824. 
 
For the CRPC lesions, the limited sample size is determined for detecting an overall association 
and prevents a definitive study of the interaction with race, however, descriptive statistics will be 
used to characterize the agreement seen in each racial cohort, and if a non-significant, but 
clinical interesting difference in correlation is observed, predictive power calculations will be 
used to design future studies only. It is possible cholesterol levels at enrollment, especially for 
the CRPC lesions, may not reflect the environment in which the tumor developed. To account for 
this, we will also explore the link between pre-diagnostic cholesterol levels and tissue levels of 
androgens and steroidogenic enzymes. 
 
7.0 DISCOMFORTS AND RISKS 
 
Risks and side effects related to the procedures associated with this study include: 
 

 Radical Prostatectomy or excisional biopsy: The procedure is not experimental. The 
procedure they are undergoing is a part of  routine care and is not part of this study. 
Consent for this procedure and risks will be covered under a separate surgical consent 
form. 

 
Medical History/Demographic Information/Accessing Medical Records: There are no 
physical risks involved with collecting or accessing the Durham VA’s electronic medical 
records system, however there are risks associated with loss of confidentiality of sensitive 
information. Patients’ information that is collected from CPRS will be housed on the secure 
Durham VA server that is only accessible to IRB-approved study personnel. Patients will be 
assigned a unique study ID which will be used when samples or data are given to Dr. Keith 
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Solomon or Dr. Maragatha Kuchibhatla. Tissue samples going to Dr. Keith Solomon will 
also include the date of surgery. The key to the code will reside on the Durham VA server.  
 Blood tests: Risks associated with drawing blood from a patient’s arm include 

momentary pain and/or bruising, and rarely, fainting or infection. 
 
 
8.0 BENEFITS 
 
Participants may not personally be helped by taking part in this study, but their participation may 
lead to knowledge that will help others.  There is a potential benefit to society and future patients 
with prostate cancer.  Participation in this study involves minimal risk and the benefits to future 
patients with similar conditions outweigh the risks and discomforts. 
 
9.0 DATA HANDLING 
 
Data will be collected in a password-protected database which will be securely stored on the 
Durham VA server. Only Dr. Freedland and his IRB approved study team will have access to 
this file. All VA consent forms and case report forms (CRFs) will be kept in a locked file cabinet 
housed in Dr. Freedland’s locked VA research office.  
 
De-identified data to be sent to Maragatha Kuchibhatlawill include: age, ethnicity, medical 
history, anthropometric measurements, laboratory results, and clinical and pathological 
information. 
 
Subjects’ names and identifiers will not be used when data are presented at research meetings or 
presented in manuscripts. 
 
10.0 SAFETY MONITORING 
 
The blood obtained from the blood draw will be processed at the Durham VA. Tissue samples 
will be labeled with the study subject number and date of surgery. Data will be labeled with the 
study subject number only.  The key to this code will be kept on the Durham VA server with 
access limited to Dr. Freedland’s VA research team and this code will not be released outside of 
the VA. 
 
 
11.0 REPORTING ADVERSE EVENTS 
 
If a severe adverse event occurs during the blood draws, this will be reported to the Duke and 
Durham VA IRB as required. SAEs related to anything other than the blood draws will not be 
documented or reported. Any unanticipated problems involving data security will also be 
reported to the Durham VA IRB and ISO as required.  
 
An AE is considered “serious” if in the opinion of the investigator it is one of the following 
outcomes: 
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- Fatal 
- Life-threatening 
- Constitutes a congenital anomaly or birth defect 
- A medically significant condition (defined as an event that compromises subject safety or 
may require medical or surgical intervention to prevent one of the three outcomes above). 
- Requires inpatient hospitalization or prolongation of existing hospitalization 
- Results in persistent or significant incapacity or substantial disruption to conduct normal 
life functions. 
 
12.0 DISSEMINATION, NOTIFICATION, AND REPORTING RESULTS 
 
The results of findings may be published in high impact factor peer-reviewed scientific journals.  
Therefore, all subjects may have access to the study findings.  Moreover, as the results of these 
analyses are exploratory in nature, no effort will be made to contact each individual regarding 
study results. 
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